Computation of transfer function matrices of periodic systems
نویسنده
چکیده
We present a numerical approach to evaluate the transfer function matrices of a periodic system corresponding to lifted state-space representations as constant systems. The proposed pole-zero method determines each entry of the transfer function matrix in a minimal zerospoles-gain representation. A basic computational ingredient for this method is the extended periodic real Schur form of a periodic matrix, which underlies the computation of minimal realizations and system poles. To compute zeros and gains, fast algorithms are proposed, which are specially tailored to particular single-input single-output periodic systems. The new method relies exclusively on reliable numerical computations and is well suited for robust software implementations.
منابع مشابه
Study of flow and heat transfer characteristics in a periodic zigzag channel for cooling of polymer electrolyte fuel cells
In this study, a periodic zigzag channel with rectangular cross-section has been used in order to obtain a high-efficiency system for cooling a polymer electrolyte fuel cell. An appropriate function of fuel cells and enhancement of their lifetime require uniform temperature conditions of around 80°C. On the other hand, due to volume and weight constraints, a low-density compact heat exchanger i...
متن کاملPole Assignment Of Linear Discrete-Time Periodic Systems In Specified Discs Through State Feedback
The problem of pole assignment, also known as an eigenvalue assignment, in linear discrete-time periodic systems in discs was solved by a novel method which employs elementary similarity operations. The former methods tried to assign the points inside the unit circle while preserving the stability of the discrete time periodic system. Nevertheless, now we can obtain the location of eigenvalues ...
متن کاملON THE FUNCTION OF BLOCK ANTI DIAGONAL MATRICES AND ITS APPLICATION
The matrix functions appear in several applications in engineering and sciences. The computation of these functions almost involved complicated theory. Thus, improving the concept theoretically seems unavoidable to obtain some new relations and algorithms for evaluating these functions. The aim of this paper is proposing some new reciprocal for the function of block anti diagonal matrices. More...
متن کاملABCD matrices as similarity transformations of Wigner matrices and periodic systems in optics.
It is shown that every ray transfer matrix, often called the ABCD matrix, can be written as a similarity transformation of one of the Wigner matrices that dictate the internal space-time symmetries of relativistic particles, while the transformation matrix is a rotation preceded by a squeeze. The implementation of this mathematical procedure is described, and how it facilitates the calculations...
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کامل